An Incremental Constraint-Based Framework for Task and Motion Planning

نویسندگان

  • Neil T. Dantam
  • Zachary K. Kingston
  • Swarat Chaudhuri
  • Lydia E. Kavraki
چکیده

We present a new constraint-based framework for task and motion planning (TMP). Our approach is extensible, probabilistically-complete, and offers improved performance and generality compared to a similar, state-of-the-art planner. The key idea is to leverage incremental constraint solving to efficiently incorporate geometric information at the task level. Using motion feasibility information to guide task planning improves scalability of the overall planner. Our key abstractions address the requirements of manipulation and object rearrangement. We validate our approach on a physical manipulator and evaluate scalability on scenarios with many objects and long plans, showing order-ofmagnitude gains compared to the benchmark planner and improved scalability from additional geometric guidance. Finally, in addition to describing a new method for TMP and its implementation on a physical robot, we also put forward requirements and abstractions for the development of similar planners in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Trajectory Planning of a Box Transporter Mobile Robot

This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...

متن کامل

Incremental Task and Motion Planning: A Constraint-Based Approach

We present a new algorithm for task and motion planning (TMP) and discuss the requirements and abstractions necessary to obtain robust solutions for TMP in general. Our Iteratively Deepened Task and Motion Planning (IDTMP) method is probabilistically-complete and offers improved performance and generality compared to a similar, state-of-theart, probabilistically-complete planner. The key idea o...

متن کامل

Trajectory Planning Using High Order Polynomials under Acceleration Constraint

The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Approximate Incremental Dynamic Analysis Using Reduction of Ground Motion Records

Incremental dynamic analysis (IDA) requires the analysis of the non-linear response history of a structure for an ensemble of ground motions, each scaled to multiple levels of intensity and selected to cover the entire range of structural response. Recognizing that IDA of practical structures is computationally demanding, an approximate procedure based on the reduction of the number of ground m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017